Memory design for autonomous driving systems

Advertisement

BEGIN ARTICLE PREVIEW:

IntroductionWhile most industry watchers believe we are still perhaps over a decade away from fully autonomous vehicles becoming common in European cities, vehicle automation is already a hot spot of design activity.The automotive industry, its regulators and insurers, unite the various technologies for automating vehicles under the banner of Advanced Driver Assistance Systems (ADAS). They categorise system capabilities into six levels, between level 0 (L0), where the vehicle is being driven by a human with no assistance, and level 5 (L5), full autonomy, where no human attention or intervention is required for the vehicle to drive safely.ADAS L1 capabilities such as cruise control are considered standard specification for many automotive brands. ADAS L2, partial automation, and the initial L3, conditional automation, systems are on the market.  Audi’s 2018 A8 is one of a few vehicles marketed as having L3 ADAS capabilities; on roads with a central barrier, at speeds below 60Km/h, its ‘Traffic Jam Pilot’ mode can take full control.The journey to full autonomous driving, ADAS L5 is still under way. In this article, we consider the demands of memory subsystems at the higher ADAS levels, exploring the impact of memory technology choices to identify the current design …

END ARTICLE PREVIEW

READ MORE FROM SOURCE ARTICLE