Elephant genetics guide conservation



UNIVERSITY PARK, Pa. — A large-scale study of African elephant genetics in Tanzania reveals the history of elephant populations, how they interact, and what areas may be critical to conserve in order to preserve genetic diversity for species conservation. The study, by researchers at Penn State, appears online in the journal Ecology & Evolution and is the first to explore gene flow — a process vital to maintain necessary genetic diversity for species survival — between protected areas in Africa.“Elephants are a hallmark of the savannah, but poaching and habitat loss and fragmentation have led to major population declines across Africa,” said George Lohay, postdoctoral scholar in biology at Penn State and first author of the paper. “Human activities accelerate the loss of elephant habitat, as well as the land between protected areas. Maintaining connectivity between protected areas may be especially important for this far-ranging species, particularly with regard to gene flow, which can improve genetic diversity and help buffer small populations against disease and other threats.”
The researchers compared both nuclear and mitochondrial DNA of 688 elephants across Tanzania from 4 major areas with large elephant populations. These include the Serengeti and Tarangire-Manyara in north-east Tanzania, Ruaha in south-central Tanzania, and Selous in southeast Tanzania. Each contains several areas with varying levels of protection, including national parks, game reserves, and private land conserved for livestock and wildlife tourism. Many of the wildlife corridors — the areas between these protected areas — have closed completely due to human activity.

Researchers from Penn State studied the genetics of …