Curved origami provides new range of stiffness-to-flexibility in robots

Advertisement

BEGIN ARTICLE PREVIEW:

New research that employs curved origami structures has dramatic implications in the development of robotics going forward, providing tunable flexibility—the ability to adjust stiffness based on function—that historically has been difficult to achieve using simple design.

“The incorporation of curved origami structures into robotic design provides a remarkable possibility in tunable flexibility, or stiffness, as its complementary concept,” explained Hanqing Jiang, a mechanical engineering professor at Arizona State University. “High flexibility, or low stiffness, is comparable to the soft landing navigated by a cat. Low flexibility, or high stiffness, is similar to executing of a hard jump in a pair of stiff boots,” he said.
Jiang is the lead author of a paper, “In Situ Stiffness Manipulation Using Elegant Curved Origami,” published this week in Science Advances. “Curved Origami can add both strength and cat-like flexibility to robotic actions,” he said.
Jiang also compared employing curved origami to the operational differences between sporty cars sought by drivers who want to feel the rigidity of the road and vehicles desired by those who seek a comfortable ride that alleviates jarring movements. “Similar to switching between a sporty car mode to a comfortable ride mode, these curved origami structures will …

END ARTICLE PREVIEW

READ MORE FROM SOURCE ARTICLE