An extremely social robotic fish helps unravel the collective patterns of animal groups

Advertisement

BEGIN ARTICLE PREVIEW:

Using state-of-the-art robotics, a research team from the University of Konstanz, Science of Intelligence, and the Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) shows that animals’ speed is fundamental for collective behavioral patterns, and that ultimately it is the faster individuals that have the strongest influence on group-level behavior. Credit: David Bierbach

The spectacular and complex visual patterns created by animal groups moving together have fascinated humans since the beginning of time. Think of the highly synchronized movements of a flock of starlings, or the circular motion of a school of barracudas. Using state-of-the-art robotics, a research team from the University of Konstanz, Science of Intelligence, and the Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) shows that animals’ speed is fundamental for collective behavioral patterns, and that ultimately it is the faster individuals that have the strongest influence on group-level behavior.

The study, published in Biology Letters, gives new insights on complex collective behavioral patterns in nature, and provides knowledge that could help develop robotic systems that move collectively, such as robot swarms, driverless cars, and drones.
Researchers have long focused on identifying the emergence of collective patterns. Thanks to a combination of behavioral experiments, computer …

END ARTICLE PREVIEW

READ MORE FROM SOURCE ARTICLE